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Abstract – A universal process for coherent Ghost Imaging (GI) without phase-sensitive detection
is presented in this paper. The process is based on the sparsity constraint of the target, which
helps to accelerate the information extraction. By taking advantage of this process, the coherent
GI scheme with a point-like detector in the test path is improved to achieve higher efficiency and
higher resolution, even though the phase information of the random field is lost. This process will
contribute to the practical applications, such as Fourier-transform diffraction GI of X-ray, and
remote sensing.

Copyright c© EPLA, 2012

Introduction. – Ghost Imaging (GI) is a novel and
promising technique that can reconstruct the object’s real-
space image or its Fourier-transform diffraction spectrum
based on the classical or quantum correlation of the light
field fluctuations [1,2]. GI has benefited lots of practical
applications with its particular scheme advantages [3–6].
However, the traditional GI process of calculating the
correlation is little efficient, and massive measurements
are required for good visibility.
In fact, the imaging technique is a kind of information

extraction, where we are confronted with different infor-
mation but the very information we are interested in is
usually much less than the raw data itself. For a long time,
sparsity of the target has been taken as popular a priori
for information extraction to improve the efficiency [7–9].
The sparsity constraint improves the efficiency by reform-
ing both the algorithms [10,11] and the way of sampling
[7,8]. Instead of collecting all the information and process-
ing it, sparsity allows to acquire the useful information
with fewer measurements. Sparsity constraint has already
been applied to de-noising [12], super-resolution imag-
ing [13–16], and target recognition [17] with success. There
are also numerical simulations about the performance of
sparsity constraint in quantum state tomography [18].
Recently, efforts have been made to combine GI with

sparsity reconstruction [9,16,19,20]. This combination
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makes great sense because it preserves not only the
scheme advantage of GI but also higher efficiency [9] and
even super-resolution [19]. Actually, there are two models
of GI schemes: incoherent GI and coherent GI [21]. When
the test detector of the GI scheme is a bucket-like one
that collects all the signal modulated by the target, such
as the real-space GI with near-field target, the GI scheme
is an incoherent system and a perfect sensing equation
can be established by directly using intensities obtained
on the test and the reference detectors [9]. However,
there are some practical GI schemes where the test
detector has to be taken as a point-like one, such as the
Fourier-transform diffraction GI and the remote sensing.
In such cases, the scheme turns into a coherent system,
and the phase information of the light field, which is
usually lost during the measuration, will break the perfect
sensing equation and further influence the reconstruction.
Therefore, a universal process is required to remedy such
loss and rebuild a sensing equation for the reconstruction.
In this paper, we propose such a process that can be

applied to all kinds of coherent GI schemes based on
sparsity constraint. In this process, sparsity constraint
allows a more efficient way of compressive sampling, and
the known optical scheme and the statistics of light field
are taken as extra a priori to remedy the lost phase
information. Experimental results of diffraction GI via
such process are presented to show higher efficiency and
higher resolution compared with traditional GI results.
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Fig. 1: The scheme of coherent GI . A beam splitter (BS)
is introduced to divide the thermal light into two paths: in
the reference path, the field propagates freely to an array
detector D1; in the test path, the field modulated by an
unknown object is measured by another array detector D2.
The correlation between the intensities on D1 and D2 shows
the Fourier-transform diffraction spectrum of the object when
d1 = d21+ d22, or the real-space image of the object when
d1 = d21.

Traditional coherent GI. – The scheme of lensless
coherent GI is shown in fig. 1 [1,3]. In the traditional
GI process, the correlation of intensity fluctuations is
calculated between I1 and I2 [3,21]:

G(r1, r2) = 〈I1(r1)I2(r2)〉− 〈I1(r1)〉 〈I2(r2)〉

=

∣∣∣∣
∫
dxsIs(xs)h

∗
r(xs, r1)ht(xs, r2)

∣∣∣∣
2

, (1)

where r1, r2 and xs represent the transverse position
on the reference detector D1, on the test detector D2
and on the source plane, respectively, 〈· · ·〉 represents the
ensemble average, Is(xs) is the intensity distribution on
source plane, hr(xs, r1) and ht(xs, r2) are the impulse
response functions in the reference and the test paths, and
∗ denotes the phase conjugate. By substituting different
forms of hr(xs, r1) and ht(xs, r2) into eq. (1), the real-
space image or the Fourier-transform diffraction spectrum
of the object [1,3] can be achieved.
The ensemble average in eq. (1) requires a large number

of measurements, which is usually much higher than
the pixel number of D1. This makes GI little efficient.
Meanwhile, the finite size of the thermal source Is(xs) in
eq. (1) introduces the transverse coherent length as the
intrinsic resolution limit to GI [22,23].
In Fourier-transform diffraction GI, the spatial averag-

ing technique [21] could be used into eq. (1) for faster
convergence:

GSA(r) =
∑
r2

G(r1, r1+ r)∝ const× |T {r/(λd22)}|2 ,

(2)

where the subscript SA indicates that a spatial
average has been carried out, r= r2− r1, T (f) =
1
2π

∫
dx exp(−i2πfx)t(x) is the Fourier transform of the

object’s transmittance function t(x), and λ is the light
wavelength.
Obviously, the correlation for different pixels r1 on D1

is calculated independently in the traditional process, in
other words, the measurement of each pixel is indepen-
dent.

Coherent GI via sparsity constraint. – Sparsity
constraint accelerates the information extraction via com-
pressive sampling, which depends on two principles [7]:

1) the target X is sparse in a certain basis Ψ;

2) the sensing basis Φ is highly incoherent with Ψ.

The sparsity constraint, satisfied by most natural object
when expressed in a proper representation basis Ψ,
ensures the possibility of compressive sampling and
super-resolution [24]. The incoherence between bases Ψ
and Φ makes measuration higher efficient [25].
After the sampling, an efficient algorithms is needed for

the target reconstruction. In this paper, we resort to the
Basis Pursuit (BP) method for the reconstruction [11]:

Min ‖x‖l1 subject to AX =Y. (3)

BP is based on a sensing equation between an unknown
object X and the detected signal Y through a known
sensing matrix A, where X (N -element) is known to
be sparse in basis Ψ. By performing K measurements
(K <N) in basis Φ, A=ΦΨ is a K ×N matrix and Y is a
detected K-element vector. In traditional imaging, linear
reconstruction is based on measurements in a space with
the same dimension as the object, while sparsity allows
nonlinear reconstruction from measurements in a space
with lower dimension by solving a convex optimization
of minimizing l1-norm [8,26]. Clearly, the measurement
for each pixel of X is not independent anymore in this
process. All measurements are taken as a whole to relate
the high-dimension object space Ψ and the low-dimension
sensing Φ.
In fact, the coherent GI scheme itself fits in perfectly

with both the compressive sampling and the reconstruc-
tion algorithm, which makes it a self-adaptive system
under the sparsity constraint: for each measurement, the
intensity I1(r1) recorded by the detector D1 is a random
vector that could be proved to be largely incoherent with
any fixed basis [7]; there is always another point-like detec-
tor D2 in the test path to provide intensity I2 for a sensing
equation about the object X. Accordingly, considering X
as sparse in a certain basis, a new imaging process could be
developed, where the sensing matrix A is usually related
to I1(r1), and Y is related to I2.
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In the following part, we take the scheme of lensless
diffraction GI (d1 = d21+ d22) [3] to demonstrate the
process. For each measurement, I2 could be expressed as

I2(r2) ∝
∫
obj

dxdx′E∗(x)E(x′)t∗(x)t(x′)

×exp
{
iπ

λd22

[
(x− r2)2− (x′− r2)2

]}
, (4)

where E(x) is the field on the object plane, the position
integrations of x and x′ are over the object plane. To estab-
lish a relation between I2 and I1, the known information of
the GI scheme and light propagation should be taken into
account. Consider the array detector D1 as a large enough
conjugate mirror so that the field E(x) on the object plane
can be reconstructed by the field E1(r1) on D1, and eq. (4)
could be rewritten approximately as

I2(r2) ∝
∫
ref

dr1dr
′
1E
∗
1 (r1)E1(r

′
1)

∫
obj

dxdx′t∗(x)t(x′)

×exp
{
− iπ
λd22

[
(x− r1)2− (x′− r′1)2

]}

×exp
{
iπ

λd22

[
(x− r2)2− (x′− r2)2

]}

=

∫
ref

dr1dr
′
1 exp

{
− iπ
λd22

(
r21 − r′21

)}

×E∗1 (r1)E1(r′1)T ∗
(
r1− r2
λd22

)
T

(
r′1− r2
λd22

)
,

(5)

where r1 and r
′
1 represent the transversal position on D1.

To be compatible with sparsity reconstruction, eq. (3),
eq. (5) could be further discretized for K measurements:

I2(r
(k)
2 ) ∝

N∑
i=1

N∑
j=1

E
∗(k)
1 (r1i)E

(k)
1 (r1j)

× exp
{
− iπ
λd22

(r21i− r21j)
}

×∆r1i∆r1jT ∗
(
r1i− r(k)2
λd22

)
T

(
r1j − r(k)2
λd22

)
,

(6)

where variables have been discretized r1 = {r1i}, r′1 =
{r1j}, r2 = {r(k)2 }, (i, j = 1, · · · , N ; k= 1, · · · ,K). Then the
sensing matrix A becomes

A =




a
(1)
11 a

(1)
12 · · · a(1)ij · · · a(1)NN

a
(2)
11 a

(2)
12 · · · a(2)ij · · · a(2)NN

...
...

...

a
(k)
11 a

(k)
ij a

(k)
NN

...
...

...

a
(K)
11 a

(K)
12 · · · a(K)ij · · · a(K)NN




, (7)

( c )( a ) ( b )

Fig. 2: The experimental spectrum reconstructions |T (f)|
of a double slit. (a) spectrum realized by a lens in a f -f
system; (b) spectrum by traditional correlated GI with K =
1000 measurements; (c) spectrum by sparsity reconstruction
(SPGL1) with the same measurements as (b).

where

a
(k)
ij ∝E∗(k)1 (r1i)E

(k)
1 (r1j) exp{−iπ(r21i− r21j)/(λd22)}.

From eq. (7), if there are N pixels on D1 and we
take K measurements, A should be a K ×N2 matrix.
However, for each row of A (each measurement), there
are only N elements that can be detected as known
intensities I1(r1) when r1 = r

′
1 or i= j, the other N

2−N
mutual-interference elements are in general unobtainable.
Fortunately, there is another a priori information about
the statistics of the light field that can be used for such
case.
Since GI uses random thermal source, the phases of

the field propagating in the scheme obey uniform random
distribution with zero average value. Based on such statis-

tics, the phase distribution of E
(k)
1 (r1) can be properly

conjectured to be ϕ(k)(r1) for the k-th measurement to
establish a K ×N2 matrix A. Although the conjectured
phases ϕ(k)(r1) deviate from the true values, since we only
care about the N elements of |T (f)|, the deviations can be
compensated by the phase of T (f), which are less impor-
tant in our case.
Till now, it seems like we establish an equation in

sacrifice of calculation cost by expanding A from K ×N
to K ×N2. In fact, it shows we can do much better
than that. Since the random conjectured phases make
the N2−N mutual-interference terms easily counteracted
during the summation in eq. (6), the N known intensities
play dominant roles over the N2−N mutual-interference
ones. This means that it is not necessary to conjecture all
the N2−N phases, conjecturing only part of them will be
enough. Actually, there is a tradeoff between the number
of conjectured phases and convergence. Less conjectures
will decrease the calculation cost but lead to a slower
convergence that requires more measurements. Spatial
average can also be applied in such case to enhance the
convergence.

Experimental results. – Experimental reconstruc-
tions are shown in fig. 2 and fig. 3. The schemes are
the same as shown in fig. 1 with d21 = 20 cm, d22 = 5 cm,
d1 = 25 cm. The pseudo-thermal source is realized by pass-
ing a laser beam through a slowly rotating ground glass
disk. The source size is σ= 3mm with λ= 0.532µm.

24003-p3



Hui Wang and Shensheng Han

( a () d )( c )( b )

Fig. 3: The experimental spectrum reconstructions of a
“Zhong” ring. (a) The object; (b) spectrum realized by a
lens in a f -f system; (c) spectrum by traditional GI with
K = 4000 measurements; (d) spectrum by sparsity reconstruc-
tion (GPSR), with the same measurements as (c).

In fig. 2, the object is a double slit with slit width 200µm
and slit separation 600µm. The Fourier spectrum shown in
fig. 2(a) is realized by using a lens (focus = 5 cm) in a f -f
system. The GI reconstruction by intensity correlation
and by BP are shown in fig. 2(b) and (c), respectively.
The pixel number of the image is N = 100× 100 = 10000,
and there are only 10000 terms of E1(r1i)E1(r1j), (i �= j)
with conjectured phases in each measurement. Spectral
Projected Gradient for l1-norm minimization (SPGL1) is
used here for BP problem in eq. (3), where we assume the
spectrum is sparse in real space.
Figure 3 shows the spectrum reconstruction of a

“Zhong” ring with diameter 0.8mm. Here N = 64× 64 =
4096, we consider all N2−N mutual-interference terms
to be zero and only use the measured N intensities I1(r1)
for the reconstruction. Gradient Projection for Sparse
Reconstruction (GPSR) is used here to solve eq. (3),
where we take the Discrete Cosine Transform (DCT)
basis as the sparse basis.
In fig. 2 and fig. 3, both traditional GI process and spar-

sity reconstructions have been performed through spatial
average technique [21]. Obviously, reconstructions with
sparsity constraint obtain higher visibility and higher reso-
lution than traditional GI. Both successful reconstructions
show the feasibility of this process with a reasonable calcu-
lation cost. The comparison between the measurement
number of fig. 2 and fig. 3 also shows the tradeoff between
the number of conjectured phases and the convergence.
In conclusion, we demonstrate a universal process for

coherent GI based on sparsity constraint. In this process,
the knowledge of the imaging scheme, the light prop-
agation and the statistics of light field should also be
considered as a priori information for the sparsity recon-
struction. This technique opens up a new approach to
nonlocal GI systems with higher efficiency and higher reso-
lution, which could be applied in diffraction imaging of
X-ray and remote sensing [4].
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